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On the basis of the statistical theory of a crystal with vacancies we calculate 
the coefficient of diffusion, the effective frequency, and the activation energy 
for crystals of the nitrogen type. 

We use the statistical method of calculating the coefficient of self-diffusion devel- 
oped earlier in [i], which is based on the method of conditional distributions [2]. An 
essential difference from [i] is that in the Hamiltonian of the system we include the depen- 
dence of the orientational variables of the molecules and the corresponding contributions 
to the kinetic energy. In particular, molecular crystals such as nitrogen correspond to 
Hamiltonians of this type. The theoretical treatment of the problem for crystals of this 
type is especially important, since, as far as we know, there is no experimental data on 
the diffusion coefficient for crystals of this type. 

Method of Calculation. We consider a system of N identical particles with rotational 
degrees of freedom in a volume V in thermodynamic equilibrium. The Hamiltonian of the 
system is written in the form 

H~ = ,,,~ + 1~ _~_ _~1 .%-~,, (x~, x~). (1)  
~=1 ~ 2m 2 

Here I is the moment of inertia of the molecule (modeled as a rigid rotator); r x v) is 
the molecular interaction potential, which depends on the five-dimensional vectors xp = 
(q~, e~) where q~ are the coordinates of the center of mass of the molecule and the vec- 
tor e~ defines its orientation. The prime on the summation sign indicates that the sum 
is to be evaluated with p # v. Following [2], and basing the treatment on the Gibbs distri- 
bution function, we describe the statistical method for this system. The total volume V of 
the crystal is divided up into M equal cells of volume w = V/M, where M = N + No, N o is the 
number of vacancies in the crystal. We only take into account states in which each cell is 
either empty or contains one molecule. We also assume only pair correlations. Then the 
system is described by six distribution functions: Fi, f~(p~, I~, x O, f~j, Fij(p~,li, xi), Fq(p~,lj, xj), 

Fij(pi, pj, l~,lj, xi, xj) , where F i is the probability that the cell is empty; Fi(pi, li, xi) is 
the probability density that in cell i there is a molecule near the point Ii with orienta- 
tion qi , momentum r and angular momentum Pi The pair functions (the last four func- 
tions of the above set) determine the corresponding probabilities for pairs of cells. If 
the function has an index with no corresponding arguments, this means that the cell with 
this number is empty, i.e. it contains a vacancy. 

In equilibrium statistical mechanics, the momenta, angular momenta, and coordinates 
are distributed independently: 

Fi (p/, 1~, xi) = F (pi) F (1i) Fi (xi), (2)  

Fij(pi ,  P./, Ii, lj, xi, x~)-= F ( p i ) F ( p s ) F ( l i ) F ( l i ) F ~ i ( x i ,  xj). 

The following exact probability relations can be written for the configurational parts 
of the distribution functions: 

Fi = Fis + ( dxiF~s (x~,), F~ (xl) -=- Fij (x~) + .I d'v'iFi2 (xl, .'c i) (3) 
i'" / 
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Fig. I. Effective frequen- 
cy as a function of pres- 
sure. 

where these relations follow from the definitions of the distribution functions. Here and 
below all integrals are evaluated over the five-dimensional space representing the union of 
the center-of-mass position variables and the orientational variables. 

Following the procedure described in detail in [i], we obtain a closed system of non- 
linear integral equations: 

exp (-- ~%,i) = exp (~j,~) Fj q- .~ dxj exp [~%;~ (xT)] F~ (x~), 
i 

exp [-- ~u;(xi)]  = exp (67j,i) Fi q- S dxi exp {} [~j,i ( x j ) -  r (xi, xj)]} Fj(xi). 
] 

~3(xi) are the quasipotential and potential of the mean force due t o  cell Here ~.j and 
j on empty cell i and on the particle in cell i, respectively. All cells are equivalent in 

.... M), where n o 

M M 

% =  %'~q2s,,~, no=exp[--~(~p-l-Pw)], qoi(xs)= ~_~ qb,~(x~), 
m 'i m:# ] 

= N0/M is the con- an infinite system, and hence ~i~-~, Fjsno (j = i, 2, 
centration of vacancies, and 

(4) 

(5) 

Fj (x~) = (1 -- N0) exp [-- B~J (xjil/~ dxj exp [-- ~% (xj)], 
i 

w h i c h ,  t o g e t h e r  w i t h  ( 4 ) ,  f o r m s  a c l o s e d ,  s e l f - c o n s i s t e n t  s y s t e m  o f  e q u a t i o n s .  T h e  
H e l m h o l t z  f r e e  e n e r g y  p e r  c e l l  and  t h e  p r e s s u r e  can  be e x p r e s s e d  in  t e r m s  o f  t h e  s o l u t i o n  
t o  t h i s  s y s t e m  o f  e q u a t i o n s :  

[ = - -  ~ In {(Qo/no) ~o [Q/(1 - -  no)l!--n~ Qo = exp (--  ~q~), (6)  

Q = .f dxj exp [--  Bqb (xj)], P 
] 

As a f i r s t  s tep in  o b t a i n i n g  an approx imate s o l u t i o n  o f  the system (4)  we use the f a c t  
that n 0 << i; therefore the solution can be written as a power series in n o . In the zeroth 
approximation in no, (4) takes the form 

exp (--  ~%,j) = [ dxi exp [t3%. i (xj)] Fj (xj), ( 7 ) 
f 

exp [-- ~ / ,  j (x~)] = [ dx~ exp {~ [~i,~ (x j) - -  q) (xi, x~)] } Fj (xi), (8) 
] 

and 

Fj (x~)= Q-~ exp [-- ~r (xj)]: (9)  

The solution of (7) and (8) can be obtained by the method of steepest descent [3], using 
the fact that the function Fj(xj) has a sharp maximum at the lattice point for the equili- 
brium orientation ~i . The equilibrium position of the molecule at lattice point i is writ- 
ten as the five-dimensional vector a i =(n~, 6~) , where n i is the coordinate vector of the 
lattice point and 6~ is the equilibrium orientation. Then application of the method of 
steepest descent with the leading asymptotic term taken into account gives 
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+~.~ (x~) = m (x~, aA - -  +~,~ (a~), 

r'Pi,i = - -  9i,i (aj) = --( ] )  (Cti, a~)/2, 
(10) 

(11) 

and 

~i,J (ai) = ~J, ~ (aj). ( 1 2 )  

Hence t h e  mean p o t e n t i a l s  a r e  e x p r e s s e d  in  t e r m s  o f  t h e  p a i r  i n t e r a c t i o n  p o t e n t i a l s .  T h e r e -  
f o r e  t h e  d i s t r i b u t i o n  f u n c t i o n s  can  be f o u n d ,  f rom w h i c h  i t  i s  p o s s i b l e  t o  compute  t h e  d i f -  
f u s i o n  c o e f f i c i e n t  f o r  a n i t r o g e n  c r y s t a l .  

We have  f o r  t h e  momentum and a n g u l a r  momentum d i s t r i b u t i o n  f u n c t i o n s  

F (p~) = [~/(2nm)] 3/2 exp [-- ~p~/(2m)], ~ F (1~) dl~ = 1, 

~! dp~dly~ (p~, 1~, xi) = F, (x~), ~ dpzd l f  u (p~, 1~, x~) = F~i (x~), (13)  

f:I = ..... J dp~dpjdl~dljFi~(pi, 1~, pj, Ij, xi, xj) F~(x~, x~). 

Diffusion processes in solids are usually described as a random walk with the use of 
various assumptions. For cubic crystals the coefficient of self-diffusion has the form [4] 

D = kRi/6, (14) 

where R is  the leng th  o f  the molecu lar  jumps and i s  equal to  the d is tance  between neares t  
neighbors on the cubic l a t t i c e .  

We f {nd  the f requency o f  jumps us ing the d i s t r i b u t i o n  f u n c t i o n  Fij(pi ,  li, x 0 , which is  
the p r o b a b i l i t y  d e n s i t y  o f  observ ing a molecule a t  the p o i n t  x~(q~6wi; e 0 w i t h  momentum p~ 
and angular  momentum li when c e l l  j i s  empty ( i . e .  con ta ins  a vacancy) ,  sub jec t  to  the 
cond i t i on  t h a t  a l l  s t a tes  o f  the remain ing M-2 c e l l s  are taken i n t o  account.  

Let cell i contain a molecule and cell j be empty and let these cells be nearest neigh- 
bors on an fcc lattice. We choose the coordinate system such that the origin is at the cen- 
ter of cell i, the z axis is directed along the line joining the centers of cells i and j, 
and the x and y axes are perpendicular to the z axis. 

We will assume that the atom in cell i makes a transition to the empty cell j if it 
reaches the boundary Sij between the cells and if the component of its momentum along the z 
axis is positive for arbitrary angular momentum. Then the frequency of jumps is given by 
the expression [5, i] 

k = E l J _  I'dp~ j d p  u fdp{p~ (dl~ f dx,Fi3(Pi, li, x~), (15) 
m ,, i=I 0 . . . .  s~jG,4 

where A is the two-dimensional subspace of orientations e~ This expression is different 
from the analogous result in [5]. First, here we have considered molecules with rotational 
degrees of freedom; second, in [5] essentially isolated vacancies were considered, i.e. it 
was assumed that all of the surrounding cells contain particles, whereas here, according to 
(15), each of the M-2 cells can either be empty or contain one molecule. 

The integration with respect to momentum and angular momentum in (15) can be carried 
out directly, taking into account the explicit form of the function iZq(p~, li, x~) 

Fu (p~, !~, xi) = ~ exp [--  ~p~/(2m)l x 

• exp {~ [q% j (x3 + %, il} F~ (x~) F (!i) Fj. ( 16 ) 

Hence 

k =  Zl(2~m)-l/Zexp(~q~j.~)Fs ~ dxiexpi~%j(xl) lFi(xi) .  
(Sij@A) 

This last expression can be rewritten in the form 

(17) 

k = Zl(iaf~m)-l/Zno(1 - -  no) exp (iSqb, i) J" dx~exp {~[r q%(xi)l} Q-L 
(Sij(~A) 

(18) 
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Fig. 2. Activation energy of self-diffusion 
of a monovacancy in an N 2 crystal as a func- 
tion of pressure. 

Fig. 3. Logarithm of the coefficient of self- 
diffusion of monovacancies in an N 2 crystal 
as a function of pressure for the temperatures 
0 = 0.i (i) and 0.3 (2). 

Evaluating the integral in (18) approximately, using the method of steepest descent, 
we obtain the following formula for the frequency of jumps: 

/e = v exp ( - -  ~E), ( 1 9 )  

where the so-called effective frequency is 

- Z~ (o/m) ~/2 [~/(2~)1, (20) 
E = q~ + Pw + {[% (si) - -  cPi,~ (sl)] - -  [q)~ (a~) - -  q)~,i (ai)] - -  [%,j (ai)+q)j, i]} ( 2 1 )  

and where E is a quantity having the dimensions of energy; s i is a five-dimensional vector 
defined such that the function (pi(xO--(pi,j(&) has a minimum at the boundary between cells 
i and j when x i = si; the quantities o and o s are defined by the relations 

cr = det  ~ 02q)(xi, aj)/OxiO& , (22) 
.i J x i = a  i J 

(~s = {dc:~ [.---~ ~j 02(1)(Xi ,  a i ) / O X i O X i ]  / I/4 (23) 
�9 - " x i = s i "  

Numerical Calculation of the Coefficient of Self-Diffusion. Calculations were carried 
out for a crystal consisting of particles interacting according to the potential [6]: 

O0 (xi, xj) :- V 1 (ei&j) 2 (ejnu) 2 - -  -~- (eintj) 2 -  + 

1 z 1 + V~ [(einu)(ejnij)(e~ej)-- l (e ini j )~---~(e ,n~)q--~]  q- 

+ V, J 3 .  ~ V~ (e~n~j)~ + (ejn~j)~ --  + com. ( 2 4 )  
k 

H e r e  e i i s  t h e  o r i e n t a t i o n  o f  m o l e c u l e  i ;  n i j  i s  a u n i t  v e c t o r  d i r e c t e d  f r o m  l a t t i c e  p o i n t  i 
t o  l a t t i c e  p o i n t  j ;  @LJ i s  t h e  L e n n a r d - - J o n e s  p o t e n t i a l .  E n e r g i e s  a r e  e x p r e s s e d  i n  u n i t s  o f  
t h e  L e n n a r d - - J o n e s  p o t e n t i a l  w e l l  d e p t h  s ,  v o l u m e s  a r e  i n  u n i t s  o f  t h e  c u b e  o f  t h e  l i n e a r  
p o t e n t i a l  p a r a m e t e r  r 0, a n d  p r e s s u r e s  a r e  i n  u n i t s  o f  s / r 0  a 

I t  was  a s s u m e d  i n  t h e  c a l c u l a t i o n s  t h a t  t h e  f u n c t i o n  ~(xO--gi.j(xO h a s  a minimum n e a r  
t h e  m i d p o i n t  o f  t h e  l i n e  j o i n i n g  t h e  c e n t e r s  o f  c e l l s  i a n d  j ;  t h e  o r i e n t a t i o n  o f  t h e  m o l e -  
c u l e  c o r r e s p o n d i n g  t o  t h e  e x t r e m u m  was  s e l e c t e d  n u m e r i c a l l y .  

The  e f f e c t i v e  f r e q u e n c y  a n d  a c t i v a t i o n  e n e r g y  a r e  shown i n  F i g s .  1 a n d  2 a s  f u n c t i o n s  
o f  p r e s s u r e  P.  T h e s e  d e p e n d e n c e s  a r e  s e e n  t o  be  p r a c t i c a l l y  l i n e a r .  
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In the approximations adopted here both the effective energy and the frequency are 
independent of temperature. This means that the Arrhenius expression for the coefficient 
of self-diffusion is valid: 

D = D~exp(--~H). (25)  

Figure 3 shows the dependence of the logarithm of the coefficient of self-diffusion on 
pressure; note the monotonic increase of the diffusion coefficient with increasing pressure. 

NOTATION 

N, number of particles; V, volume of the system; P~, momentum; I~ , angular momen- 
tum; m, mass of a molecule; x~, five-dimensional vector; #(x~, xv), molecular interaction 
potential; w, cell volume; 6, reciprocal of the temperature; ~ , pseudopotential; ~(x~) , 
potential of the mean force; P, pressure; no, concentration of vacancies; D, coefficient of 
self-diffusion; k, frequency of jumps; R, length of a molecular jump; A, two-dimensional 
space; sij, boundary between two cells; ~, effective frequency; E, activation energy of self- 
diffusion; nij, unit vector; e~ , unit orientation vector of a molecule; ~, Lennard-Jones 
potential well depth; r0, linear parameter in the Lennard-Jones potential; Zl, number of 
nearest neighbors. 
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OPTIMIZING HOT PRESSING FOR 

COLD-PRESSED POROUS BLANKS 

V. B. Glasko, I. V. Demina, 
S. I. Zastrozhnov, B. V. Safronov, 
A. N. Tikhonov, M. K. Trubetskov, 
and M. P. Shapovalov 

UDC 517.9:536.2 

A model is used for three-stage hot pressing, which is based on the effective 
characteristics for the porous cold-pressed blanks and is used to optimize the 
process as a whole. 

1. Powder metallurgy is important because it not only economizes in metal and reduces 
costs but also provides composites with unique properties. Sometimes, one component here 
is hot pressing for cold-pressed porous blanks, in which the powder sinters. 

Long sintering at high temperatures can cause selective recrystallization, or recry- 
stallization embrittlement in the more typical refractory materials [i], i.e., strength 
loss, so it is necessary to control the heat treatment to obtain the necessary quality. 

The control task is an inverse treatment [2],and computerized solution requires 
regularization [3]. A similar problem has been considered in [4] for another powder-proces- 
sing technique. 

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 57, No. i, pp. 85-90, July, 1989. 
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